UW Ophthalmology Fast Facts

Patient Care

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>>112,000</td>
<td>Patient visits per year</td>
</tr>
<tr>
<td>>3,000</td>
<td>Surgical procedures</td>
</tr>
</tbody>
</table>

Education

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Residents</td>
</tr>
<tr>
<td>5</td>
<td>Fellows</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,000</td>
<td>Hours of training per resident</td>
</tr>
</tbody>
</table>

Faculty

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Faculty members</td>
</tr>
<tr>
<td>38</td>
<td>Attending physicians</td>
</tr>
<tr>
<td>100+</td>
<td>Patient care staff</td>
</tr>
<tr>
<td>8</td>
<td>Patient care locations</td>
</tr>
</tbody>
</table>

Research

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22,000</td>
<td>Square feet of dedicated lab space</td>
</tr>
<tr>
<td>175</td>
<td>Papers published during the 2021-22 academic year</td>
</tr>
<tr>
<td>$10 million</td>
<td>Average annual total grant funding during the last three years</td>
</tr>
</tbody>
</table>

The UW Medicine Department of Ophthalmology is the only full-service ophthalmology training program and trauma service in the states of Washington, Wyoming, Alaska, Montana, and Idaho.
Message from the Chair,
Russell N. Van Gelder, MD, PhD

On behalf of the Department of Ophthalmology at UW Medicine, it is my pleasure to present our Community Report for 2022.

Because of the COVID-19 pandemic, this is the first Community Report in three years. Despite the significant challenges during this time, we have continued to pursue our singular mission: to alleviate suffering from eye disease. We continue to do this through our robust research programs, outstanding patient care, educational programs to train the next generation of physicians, and by gifts from generous donors and grateful patients. We have had a remarkable year in the department in each of these areas and are delighted to share our progress with you.

Our vision scientists are committed to improving diagnosis, treatment, and ultimately finding cures for diseases of the eye and visual system. Collectively, the department published 175 papers during the 2021-22 academic year. This year our department rose to #3 in the nation in NIH funding among ophthalmology departments, and the University of Washington rose to #2 for National Eye Institute funding.

Learn more in this report about how our South Lake Union campus and the Karalis Johnson Retina Center (pictured on the front cover) support four pillars of research in its mission to eradicate retinal blindness: advanced optics imaging, computational ophthalmology, accelerating the therapeutic pipeline, and vision restoration research.

Our faculty provide care at eight major sites of practice: the UW Medicine Eye Institute at Harborview; the Harborview Medical Center 4W Clinic (which includes our consult and trauma services); the Eyes on James optical shop; UW Medical Center Eye Center; VA Puget Sound Health Care System (Seattle and American Lake); Seattle Children’s; the Karalis Johnson Retina Center at South Lake Union, and the UW Medicine Primary Care Clinics. Our faculty and trainees provided over 112,000 patient visits and performed over 3,000 surgeries.

The Roger and Angie Karalis Johnson Retina Center at South Lake Union continues to flourish. This center, supported by a remarkably generous gift from Angie Karalis Johnson, opened in January 2019. In the past year, it supported more than 10,000 patient visits and an ambitious research program.

We serve as a major referral center, seeing patients from the five-state WWAMI (Washington, Wyoming, Alaska, Montana, Idaho) region. We continue to provide many services rare in the community, including managing eye cancer (ocular oncology), uveitis, and medical and hereditary retinal disease.

Our faculty remain highly committed to the educational mission of the Department. We currently train 20 residents, five fellows, and scores of medical students annually. Our residency training program remains one of the most competitive in the country.

We appreciate our philanthropic partners, whose generosity accelerates our ability to conduct cutting-edge research, provide excellent patient care, and train the next generation of ophthalmologists. Endowments and individual gifts are gratefully acknowledged in this report.

Finally, in this report you will have the opportunity to meet our Community Action Board, a group of committed volunteers who advance the Department’s mission by serving as ambassadors in our community, advising faculty on matters of strategic importance, and generously supporting our mission with gifts. Philanthropic gifts help to accelerate innovation in the form of seed grants for our faculty research. We are honored and privileged to work with such a fine group of individuals as we aim to eliminate blinding eye disease.

Russell N. Van Gelder, MD, PhD
Boyd K. Bucey Memorial Professor and Chair
Department of Ophthalmology, University of Washington
Director, UW Medicine Eye Institute
Director, UW Vision Science Center
Our research scientists and ophthalmologist-clinician scientists are committed to the goal of improving diagnosis, treatment, and ultimately finding cures for diseases of the eye and visual system. The Vision Science Center at UW Medicine's South Lake Union research facility provides collaborative opportunities, bringing together scientists from across departments to work on research that is leading to the discovery of next-generation tools for diagnosing, preventing, and treating all types of eye disease.

The Vision Science Center and the Karalis Johnson Retina Center support four pillars of research in its mission to eradicate retinal blindness: advanced optics imaging, computational ophthalmology, accelerating the therapeutic pipeline, and vision restoration research.

Advanced Imaging. The retina is the only visible component of the central nervous system outside of the human brain. This tissue-paper thin structure is essential to normal vision. Visualization of the retina has been central to diagnosis of retinal disease for over a century, but advances in digital optics and imaging allow unprecedented ability to detect and characterize retinal disease.

Research Associate Professor Ram Sabesan, PhD and his lab use adaptive optics imaging borrowed from astronomy to fully correct the optics of the eye, and image the retina at the level of single cells. George and Martina Kren Endowed Chair of Ophthalmology Ricky Wang, PhD and his lab developed the now widely-used technique of optical coherence tomography angiography. These two technologies are together advancing our ability to image the retina to single-cell resolution.

Computational Ophthalmology. The availability of huge datasets such as the American Academy of Ophthalmology’s IRIS registry allows C. Dan and Irene Hunter Endowed Professor Aaron Lee, MD and Klorfine Family Endowed Chair Cecilia Lee, MD to determine real-world outcomes of treatments and identify risk factors and trends in disease on an unparalleled scale. Combined with machine learning approaches, we anticipate that personalized precision retinal medicine will become a reality – finding the best possible treatment options for patients based on analysis of millions of similar cases.

Accelerating the therapeutic pipeline includes the work of Gordon and Joan Bergy Professor Jennifer Chao, MD, PhD. This lab is able to take blood samples from patients affected by retinal diseases to create patient-specific stem cells, which they can then grow into small copies of the retina in the laboratory. These cells can then be tested with available drugs, or even nutritional supplements, to look for agents that might slow or stop degeneration. Such interventions can then be tested in the clinic with the sensitive imaging techniques of the first pillar to identify promising treatments. This technique also has potential for transplantation – repairing damaged tissues with the patient’s own cells.

The work of Dr. Kathryn Pepple, Associate Professor of Ophthalmology, also accelerates the therapeutic pipeline, by characterizing animal models of ocular inflammatory disease which can be used for drug development.

Vision restoration describes methods to reintroduce light sensitivity to retinas blind from degeneration. Gene therapy approaches pioneered by Bishop Professor Jay Neitz, PhD and Ray Hill Chair Maureen Neitz, PhD have been shown to correct color blindness and have potential for correcting other forms of blindness. Research from the laboratory of Bucey Chair Russell Van Gelder, MD, PhD’s laboratory is using small molecules to ‘reanimate’ the remaining cells in the degenerated retina to restore light responsiveness.

Learn more about the research in select faculty labs in the following pages.
The Sabesan Lab

Ram Sabesan, PhD
Research Associate Professor

The Sabesan lab investigates the functional mechanisms by which photoreceptors and their ensuing neural circuits mediate the most fundamental aspects of vision and how these visual capacities are affected by retinal diseases. To this end, the Sabesan lab develops and uses novel cellular imaging tools which enable the visualization of the structure and function of living retinal cells at unprecedented spatial scales.

The backbone of the methods pursued by the lab is a technology called adaptive optics – the same tool used by astronomers to peer at small objects in space. Using adaptive optics, one can overcome the optical imperfections that exist in the human eye, converting the eyeball essentially into a microscope objective. By combining adaptive optics with other microscopy techniques, one obtains the ability to probe living cells in the retina of humans, which are about 10 times finer than the diameter of a human hair. This allows the probing of retinal cells in diseased human eyes at high resolution, thus serving as sensitive biomarkers for early disease diagnosis and monitoring of cellular events involved in disease progression. Learn more at depts.washington.edu/sabaolab.
Associate Professors of Ophthalmology Aaron and Cecilia Lee have been awarded a $33 million, four-year grant as part of the Bridge to Artificial Intelligence (Bridge2AI) program, a new initiative by the National Institutes of Health to expand the use of artificial intelligence (AI) in biomedical and behavioral research. It is the largest grant award in department history.

AI holds great promise for enabling research breakthroughs and improving clinical care. The power of AI lies in its ability to analyze vast amounts of data and extract otherwise undetectable information, but this power is limited by the quality of the data used to develop AI models. Although exciting progress is being made in this field, the need for large, thoughtfully curated datasets remains a significant challenge.

The NIH Common Fund developed the Bridge to Artificial Intelligence (Bridge2AI) initiative to address this critical need. The Drs. Lee have been awarded one of the four Bridge2AI data generation grants for new biomedical and behavioral datasets designed for AI analysis.

“We will lead multi-site efforts to create an ethically sourced, state-of-the-art dataset for type-2 diabetes mellitus (T2DM) research in this unprecedented project,” notes Dr. Cecilia Lee. “We will recruit 4,000 participants with diverse racial/ethnic backgrounds representing all stages of T2DM disease severity and collect complex multimodal data. This collaboration is structured with cross-disciplinary modules focusing on several interconnected aims, including team building, ethical oversight, training new AI researchers, and creating tools and standards for data collection. We hope that this dataset, while designed for T2DM, will also serve as a model for AI-based research into other diseases.”

The Lees’ computational ophthalmology lab has examined deep-learning models’ value in medical practice. In 2021, investigators tested seven algorithms designed to detect diabetic eye disease from retinal scans and found that just one met the performance of human screeners.

“These worked fairly well in the screening context. There didn’t seem to be any bias in detecting disease in people of different races, but there was a decrease in performance concerning people’s age. That is what this new project hopes to address,” Dr. Aaron Lee said. “If you don’t have a well-constructed, balanced dataset, then the AI models will tend to fail in underrepresented groups.”
The Lee Lab

Cecilia Lee, MD, MS
Associate Professor, Klorfine Family Endowed Chair
Aaron Lee, MD, MSCI
Associate Professor, C. Dan and Irene Hunter Endowed Professor

Aaron and Cecilia Lee collaborate on the mining of large clinical data sets and registries from around the world and unlocking the power of Big Data through recent breakthroughs in machine learning and artificial intelligence. Their major research focuses include bioinformatics, deep learning, next generation sequencing, clinical epidemiology, and data visualization. The Lee Lab’s recent published work includes clinical outcomes research in age-related macular degeneration and diabetic retinopathy. Learn more at comp.ophthalmology.uw.edu.
The Neitz Lab

Maureen Neitz, PhD
Ray Hill Chair

Jay Neitz, PhD
Bishop Foundation Professor

The Neitz lab is developing genetic tests and treatments for common vision disorders, and investigating the retinal circuitry for vision. Jay and Maureen Neitz collaborate in their studies of the visual system, taking a multidisciplinary approach that uses techniques ranging from molecular genetics to human and animal psychophysics. Major focus areas include developing gene therapy for cone-based vision disorders, investigating the role of genetic variability in the cone photo pigments in common eye diseases including AMD, myopia, and glaucoma, understanding the physiological basis for color perception. The Neitz lab is also developing treatments for myopia, the most common vision problem globally. In addition, the Neitzes are developing genetic tests to identify individuals at risk for developing common eye diseases so that therapeutic interventions can be started before symptoms appear. Learn more at neitzvision.com.
The Manookin Lab

Michael Manookin, PhD
Assistant Professor

The Manookin lab is investigating the structure and function of neural circuits within the retina and developing techniques for treating blindness.

Many blinding diseases, such as retinitis pigmentosa, cause death of the rods and cones, but spare other cell types within the retina. Thus, many techniques for restoring visual function following blindness are based on the premise that other cells within the retina remain viable and capable of performing their various roles in visual processing. There are more than 80 different neuronal types in the human retina and these form the components of the specialized circuits that transform the signals from photoreceptors into a neural code responsible for our perception of color, form, and motion, and thus visual experience. The Manookin lab is investigating the function and connectivity of neural circuits in the retina using a variety of techniques including electrophysiology, calcium imaging, and electron microscopy. This knowledge is being used to develop more effective techniques for restoring visual function following blindness.
Debarshi Mustafi, MD, PhD
Assistant Professor of Ophthalmology

The Mustafi lab is investigating the genetic basis of inherited retinal degeneration and potentials for therapeutic intervention to prevent progression of blindness.

Inherited retinal degenerations (IRDs) are a heterogeneous group of predominantly monogenic disorders that feature loss or dysfunction of photoreceptor cells as a primary or secondary event and have a prevalence of 1 in 2,000 to 1 in 3,000 individuals. In the pediatric population, IRDs are a major cause of visual impairment and can be one of the first presenting features of a syndromic condition.

Using isolated blood samples from affected IRD patients and their families, the lab is able to carry out genome sequencing to identify novel pathogenic variants of disease and reconstruct disease haplotypes, which has implications for the interpretation of disease risks in IRDs. The isolated blood samples can also be used to generate patient-specific stem cells and retinal organoids. Overall, the goal of the lab is to uncover the mechanistic details of IRDs to allow development of targeted therapeutics to benefit patients. Learn more at mustafilab.org.
Kathryn Pepple, MD, PhD
Associate Professor of Ophthalmology

The Pepple Lab is investigating the role of the innate immune system in ocular inflammation and studying new anti-inflammatory treatments for patients with uveitis.

Ocular inflammation, or uveitis, is potentially blinding disease that can affect people of all ages. Using cutting edge molecular methods, including multiplex cytokine analysis, optical coherence tomography angiography, in vivo bioluminescence imaging, and multicolor flow cytometry, the Pepple lab is studying animal models of uveitis to determine the key mediators of ocular inflammation. The lab is also testing compounds that target these key mediators to find promising new therapies for patients.
Clinical trials and grants are the tools of translation between patient care and research. The UW is second in the nation in the federal funding it spends annually on research and development according to the Higher Education Research and Development (HERD) Survey. The UW Medicine Department of Ophthalmology ranks third in the nation in total NIH grant funding.

NATIONAL INSTITUTES OF HEALTH (NIH)

Ethan Buhr, PhD
The role of OPN5 in extraocular circadian photoentrainment in mammals

Jennifer Chao, MD, PhD
Human RPE metabolism and metabolite transport

Aaron Lee, MD, MSCI
Bridge2AI: Uncovering the details of how human health is restored after disease, using Type 2 diabetes as a model.

Cecilia Lee, MD, MS
Aging eyes and aging brains in studying Alzheimer’s disease: Modern ophthalmic data collection in the adult changes in thought (ACT) study

Michael Manookin, PhD
Function, diversity, and circuitry of parallel retinal ganglion cell pathways

Maureen Neitz, PhD
CORE grant for vision research
Role of dual splicing and amino acid code in myopia, cone dysfunction and cone dystrophy associated with L/M opsin interchange mutations

Jay Neitz, PhD
Linking retinal circuits to perception

Ram Sabesan, PhD
In vivo photoreceptor physiology in the human retina
Contribution of the trichromatic cone mosaic to human vision

Tueng Shen, MD, PhD
Optical coherence elastography of corneal dynamics

Russell Van Gelder, MD, PhD
Molecular epidemiology of adenoviral pathogenesis in keratoconjunctivitis

RESEARCH TO PREVENT BLINDNESS

Aaron Lee, MD, MSCI
RPB career development grant

Michael Manookin, PhD
Two-photon imaging and electrophysiological recording to study the functional mechanisms that mediate vision in the retina and to develop techniques for restoring visual function following eye disease.

Russell Van Gelder, MD, PhD
Unrestricted Departmental Award

OTHER GRANTS AND MAJOR SPONSORS

Jennifer Chao, MD, PhD
Brightfocus Foundation
RPE Modeling on a Perfusable Microvessel Network
ACTIVE IRB APPROVED STUDIES

ADVISE - Adalimumab vs. Conventional immunosuppression for corticosteroid-sparing for uveitis (ADVISE) Trial
Randomized clinical trial that compares different types of treatments for non-infectious uveitis.

Chalazia - Local 5-fluorouracil injection for the treatment of chalazia: a prospective, comparative study
Randomized clinical study comparing four types of treatment for the sty incision and drainage; local injection of corticosteroid; local injection of 5-fluorouracil; or a combination of corticosteroid and 5-fluorouracil.

DOVETAIL - a multi-center, non-randomized, open-label, multiple ascending dose study to investigate the safety, tolerability, pharmacokinetics and pharmacodynamics of ro7200220 in monotherapy and in combination with ranibizumab, following intravitreal administration in patients with diabetic or uveitic macular edema.

DRCR Protocol AF - A randomized clinical trial evaluating fenofibrate for prevention of diabetic retinopathy worsening (Protocol AF)
This study is testing whether use of fenofibrate in patients with diabetic retinopathy can prevent worsening of the retinal disease.

Eye in AD - Ophthalmic examination and imaging in cognitive decline and dementia.
The study is evaluating possibility of surrogate markers for Alzheimer’s disease.

Explore - a phase 2, outcomes assessor-masked, multicenter, randomized study to evaluate the safety and efficacy of two doses of gt005 administered as a single subretinal injection in subjects with geographic atrophy secondary to age-related macular degeneration.

MacTel - a natural history observation and registry study of macular telangiectasia type 2.

MacTel SAFE - Phase 2a study of the effect of serine supplementation and fenofibrate treatment on serum deoxysphinganine levels in patients with macular telangiectasia (MacTel) Type 2.

Nanodropper - use of nanodropper vs. standard eyedropper in patients with glaucoma and ocular hypertension. The study compares nanodropper eyedropper attachment, which creates smaller eyedrops, with the standard eyedropper in patients with open-angle glaucoma or ocular hypertension.

Nicox Denali - a phase 3, randomized, multi-regional, double-masked, parallel-group trial evaluating the safety and efficacy between a new glaucoma drug (NCX 470) and an existing drug (Latanoprost) in patients with open-angle glaucoma or ocular hypertension.

Viridian - A multiple ascending dose (MAD) safety, tolerability and efficacy study of VRDN-001, a humanized monoclonal antibody directed against the IGF-1 receptor, in normal healthy volunteers (NHVs) and subjects with thyroid eye disease. Interventional clinical trial for patients with thyroid eye disease.

Stoke FaLCON - A prospective natural history study of patients with autosomal dominant optic atrophy. The study follows patients with optic atrophy caused by the OPA1 gene mutations.
VISION SCIENCE RESEARCH FACULTY & ASSOCIATES

OPHTHALMOLOGY PRIMARY

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethan Buhr, PhD</td>
<td>Research Associate Professor</td>
</tr>
<tr>
<td>Michelle Cabrera, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Jennifer Chao, MD, PhD</td>
<td>Gordon and Joan Bergy Associate Professor</td>
</tr>
<tr>
<td>Murray Johnstone, MD</td>
<td>Clinical Professor</td>
</tr>
<tr>
<td>Jim Kuchenbecher, PhD</td>
<td>Acting Instructor</td>
</tr>
<tr>
<td>Aaron Lee, MD, MSc</td>
<td>C. Dan and Irene Hunter Endowed Professor</td>
</tr>
<tr>
<td>Cecilia Lee, MD, MS</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Mike Manookin, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Debarshi Mustafi, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jay F. Neitz, PhD</td>
<td>Bishop Professor</td>
</tr>
<tr>
<td>Maureen E. Neitz, PhD</td>
<td>Ray H. Hill Endowed Chair</td>
</tr>
<tr>
<td>Vimal Pandiyan, PhD</td>
<td>Acting Instructor</td>
</tr>
<tr>
<td>Kathryn Pepple, MD, PhD</td>
<td>Research Associate Professor</td>
</tr>
<tr>
<td>Ram Sabesan, PhD</td>
<td>Research Associate Professor</td>
</tr>
<tr>
<td>Tueng T. Shen, MD, PhD</td>
<td>Graham and Brenda Siddall Endowed Chair</td>
</tr>
<tr>
<td>Russell Van Gelder, MD</td>
<td>Boyd K. Bucey Memorial Chair</td>
</tr>
<tr>
<td>Rui Wang, PhD</td>
<td>George and Martina Kren Endowed Chair in Ophthalmology</td>
</tr>
<tr>
<td>Yue Wu, PhD</td>
<td>Acting Instructor</td>
</tr>
<tr>
<td>John I. Clark, PhD</td>
<td>Professor, Biological Structure</td>
</tr>
<tr>
<td>Ione Fine, PhD</td>
<td>Professor, Psychology</td>
</tr>
<tr>
<td>Jim Hurley, PhD</td>
<td>Professor, Biochemistry</td>
</tr>
<tr>
<td>Dirk Keen, MD, PhD</td>
<td>Professor, Pathology</td>
</tr>
<tr>
<td>Thomas A. Reh, PhD</td>
<td>Professor, Biological Structure</td>
</tr>
<tr>
<td>Frederick M. Rieke, PhD</td>
<td>Professor, Physiology and Biophysics</td>
</tr>
<tr>
<td>Kathryn Scherpelz, MD</td>
<td>Assistant Professor, Pathology</td>
</tr>
<tr>
<td>Rachel Wong, PhD</td>
<td>Professor and Chair Biological Structure</td>
</tr>
<tr>
<td>Mike Manookin, PhD</td>
<td>Assistant Professor</td>
</tr>
</tbody>
</table>

ADJUNCT

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan E Brockerhoff, PhD</td>
<td>Professor, Biochemistry</td>
</tr>
<tr>
<td>John I. Clark, PhD</td>
<td>Professor, Biological Structure</td>
</tr>
<tr>
<td>Ione Fine, PhD</td>
<td>Professor, Psychology</td>
</tr>
<tr>
<td>Jim Hurley, PhD</td>
<td>Professor, Biochemistry</td>
</tr>
<tr>
<td>Dirk Keen, MD, PhD</td>
<td>Professor, Pathology</td>
</tr>
<tr>
<td>Thomas A. Reh, PhD</td>
<td>Professor, Biological Structure</td>
</tr>
<tr>
<td>Ruikang “Ricky” Wang, PhD</td>
<td>George and Martina Kren Endowed Chair in Ophthalmology</td>
</tr>
<tr>
<td>Yue Wu, PhD</td>
<td>Acting Instructor</td>
</tr>
<tr>
<td>John I. Clark, PhD</td>
<td>Professor, Biological Structure</td>
</tr>
<tr>
<td>Ione Fine, PhD</td>
<td>Professor, Psychology</td>
</tr>
<tr>
<td>Jim Hurley, PhD</td>
<td>Professor, Biochemistry</td>
</tr>
<tr>
<td>Dirk Keen, MD, PhD</td>
<td>Professor, Pathology</td>
</tr>
<tr>
<td>Thomas A. Reh, PhD</td>
<td>Professor, Biological Structure</td>
</tr>
</tbody>
</table>

EMERITI

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert E. Kalina, MD</td>
<td>Professor Emeritus Ophthalmology</td>
</tr>
<tr>
<td>Ann Milam, PhD</td>
<td>Professor Emerita Ophthalmology</td>
</tr>
<tr>
<td>Michael Mustari, PhD</td>
<td>Research Professor Emeritus Ophthalmology</td>
</tr>
<tr>
<td>John C. Saari, PhD</td>
<td>Professor Emeritus Ophthalmology</td>
</tr>
</tbody>
</table>

Vision scientist Jim Kuchenbecker, PhD.
PATIENT CARE

As faculty physicians, we take great pride in the quality of our care and our patients’ satisfaction. At the UW Medicine Eye Institute and the Karalis Johnson Retina Center, we treat each patient as our own family member, applying compassionate, state-of-the-art medical and surgical care. Other sites associated with the department are located at Harborview Medical Center, University of Washington Medical Center, UW Medicine Primary Care Clinics, Seattle Children’s and the VA Puget Sound Health Care System.

Motivated patient finds expert care at UW Medicine Eye Institute

Following 12 surgeries over three years, Blaine Peacock feared he might completely lose his vision due to repeated retinal detachments in his left eye.

Moving to Seattle in 2021, he turned to the UW Department of Ophthalmology for help.

“I had heard about the outstanding reputation of the UW Department of Ophthalmology and the Karalis Johnson Retina Center and knew I would receive excellent care,” Mr. Peacock said.

He was referred to Yewlin Chee, MD, Associate Professor of Ophthalmology and specialist in vitreoretinal surgery. “After previous surgeons have done the same thing over and over, and it hasn’t worked, I told her to do what you think is right,” he said.

“We needed to take a different approach in Mr. Peacock’s case,” Dr. Chee said. “There was a tremendous amount of scar tissue from his previous detachments. We made a large cut in the retina to remove it, and that allowed the retina to heal much more securely.”

Less than a year after the surgery, “my left eye is better than it has been in three years,” Mr. Peacock said. “It continues to heal, and I can see much more clearly now.”

He is grateful for the care he received from Dr. Chee and her team.

“Dr. Chee is a miracle worker, so dedicated and focused and easy to talk to. She explains things so you can understand them; she has literally single-handedly saved the vision in my left eye,” Mr. Peacock said.

Dr. Chee said motivated patients like Mr. Peacock make a big difference in outcomes.

“It’s teamwork, not just the surgeon, but a patient doing the right things that Mr. Peacock did following surgery makes a big difference.”
PATIENT CARE

UW MEDICINE OPHTHALMOLOGY PATIENT CARE FACULTY

COMPREHENSIVE OPHTHALMOLOGY

Eric R.H. Duerr, MD
Assistant Professor

PATIENT CARE PHILOSOPHY
“I am passionate about educating patients and helping guide them through decision-making and personalized treatment plans to optimize their vision and quality of life.”

Shu Feng, MD
Assistant Professor
Director, Medical Student Clerkship Program

PATIENT CARE PHILOSOPHY
“I understand that vision and eye health are crucial to one’s quality of life. My goal is to partner with patients to address their eye concerns with compassion and empathy.”

Anne Ko, MD
Clinical Assistant Professor

PATIENT CARE PHILOSOPHY
“My role as a physician involves giving patients the information they need to make an informed decision about their care.”

Deborah L. Lam, MD
Associate Professor
Chief of Eye Care Services, VA Puget Sound Health Care System

PATIENT CARE PHILOSOPHY
“I like to develop a partnership with my patients in their care.”

Thellea Leveque, MD, MPH
Clinical Professor

PATIENT CARE PHILOSOPHY
“Patient education and participation in care is vital to eye health. I will do everything I can to explain your eye condition in a way that makes sense to you. There is no such thing as a dumb question!”

Whitney Lomazow, MD
Assistant Professor

PATIENT CARE PHILOSOPHY
“I strive to provide the highest quality eye care, which of course involves compassion, empathy, and a commitment to treating each patient as I would like a member of my own family to be treated.”
Parisa Taravati, MD
Robert E. Kalina MD Associate Professor
Vice Chair, Education
Director, Residency Program
Chief of Service, UW Medical Center

PATIENT CARE PHILOSOPHY
“I believe in educating my patients on their eye conditions and making them active participants in their medical care.”

Jennifer T. Yu, MD, PhD
Clinical Associate Professor
Chief of Service, 4W Ophthalmology Clinic

Tueng T. Shen, MD, PhD
Professor
Graham and Brenda Siddall Chair In Cornea Research In Ophthalmology
Adjunct Professor In Bioengineering & Global Health
Associate Dean for Medical Technology Innovation

PATIENT CARE PHILOSOPHY
“I strongly believe that patients deserve a physician who listens, keeps them well-informed and is a partner in accomplishing the best treatment plan customized to their needs.”

Karine Duarte Bojikian, MD, PhD
Assistant Professor

GLAUCOMA

Miel Sundararajnan, MD
Assistant Professor

Andrew Chen, MD
Assistant Professor

Karine Duarte Bojikian, MD, PhD
Assistant Professor

PATIENT CARE PHILOSOPHY
“I believe in the power of a kind word, a smile, a sympathetic look, and a listening ear – I am here to provide you with the highest quality in medical and surgical care while supporting you through the journey of glaucoma care.”

Philip P. Chen, MD
Professor
Grace E. Hill Endowed Chair
Vice Chair for Clinical Services

PATIENT CARE PHILOSOPHY
“My passion is to prevent blindness caused by glaucoma.”
PATIENT CARE

MEDICAL AND SURGICAL RETINA

Jennifer Chao, MD, PhD
Associate Professor
Gordon and Joan Bergy Professor
Vice Chair, Research

PATIENT CARE PHILOSOPHY
“My goal is to provide the most advanced and compassionate care to each of my patients with the goal of improving their quality of life.”

Aaron Lee, MD, MSc
Associate Professor
C. Dan and Irene Hunter Endowed Professor

PATIENT CARE PHILOSOPHY
“As a clinician scientist, I am excited to help translate the latest breakthroughs in research into clinical care and to leverage the resources and facilities of the University of Washington to provide excellent patient care.”

Lisa Olmos de Koo, MD, MBA
Associate Professor
Director, Retina Fellowship

PATIENT CARE PHILOSOPHY
“As a retina surgeon, I am committed to excellence, drawing upon my experience and training as well as the latest scientific and technological advances to provide the best individualized care for my patients. As a medical educator and researcher, I also hope to benefit future generations of patients.”

Yewlin Chee, MD
Associate Professor

PATIENT CARE PHILOSOPHY
“I aim to provide excellent care for my patients by first understanding how their retinal disease affects their quality of life, and then by educating my patients such that they have a clear understanding of their condition and treatment options.”

Cecelia Lee, MD, MS
Associate Professor
Klorfine Family Endowed Chair

PATIENT CARE PHILOSOPHY
“I love participating in my patients’ healthcare by providing personalized, up-to-date medical care. I enjoy translating next generation research tools in medical retina to the clinic and providing deeper insights in each patient’s care.”

Kasra Rezaei, MD
Associate Professor

PATIENT CARE PHILOSOPHY
“It is a great honor to participate in the care of patients and improve their vision and quality of life.”

Debarshi Mustafi, MD, PhD
Assistant Professor

PATIENT CARE PHILOSOPHY
“My goal is to provide patient centered care to children and their families afflicted with retinal disease. Knowledge of the specific disease-causing genetic variants in patients plays an increasingly important role in the diagnosis and management of disease in an era of emerging options for genetic diseases.”

Dong (Dawn) Yang, MD
Assistant Professor

PATIENT CARE PHILOSOPHY
“It’s a true privilege to care for my patients. I aim to treat each individual in the same way that I would want to be treated.”
NEURO-OPHTHALMOLOGY

Courtney Francis, MD
Associate Professor

PATIENT CARE PHILOSOPHY
“I enjoy being able to educate my patients, residents and medical students about neuro-ophthalmologic diseases. The multidisciplinary approach we have here at UW really helps to provide the best care for our patients, many of whom have complex conditions.”

Eugene May, MD
Clinical Associate Professor

PATIENT CARE PHILOSOPHY
“My goal at work every day is to make sure that each of my patients is fully heard. Not only do I want to understand and treat their neuro-ophthalmic medical problem, but also to address their functional and emotional needs, and empower them to live their fullest lives.”

Raghu Mudumbai, MD
Associate Professor

PATIENT CARE PHILOSOPHY
“I take a patient-centered approach that empowers my patients through extensive education of their condition, thereby enabling my patients to be part of a team that provides optimal care.”

OCULOPLASTIC AND RECONSTRUCTIVE SURGERY

Christopher Chambers, MD
Associate Professor
Director, Oculoplastic and Reconstructive Surgery Fellowship

PATIENT CARE PHILOSOPHY
“Outstanding medical care should focus on treating the disease as well as the individual patient.”

Shu-Hong (Holly) Chang, MD
Clinical Associate Professor

PATIENT CARE PHILOSOPHY
“When it comes to the face, each patient’s concerns, whether medical or aesthetic, are unique. I love my work because I have the privilege of tailoring proven surgical techniques, cutting-edge science, and artistic sensibilities to create an individualized treatment plan for each patient.”

Matthew Zhang, MD
Assistant Professor

PATIENT CARE PHILOSOPHY
“Patients always come first.”
PATIENT CARE

OPTOMETRY

Susan Dini, OD
Teaching Associate

PATIENT CARE PHILOSOPHY
"Eye care is an important element of general health and quality of life. I'm committed to helping you maintain lifelong healthy eyes with valuable information and resources for your total eye health."

Nancy Ross Anibarro, OD
Teaching Associate

PATIENT CARE PHILOSOPHY
"I believe that individual attention and compassion are critical in providing patients with the highest level of comprehensive eye care. That includes giving patients a thorough explanation and providing them with the tools to be proactive in their care. I am thankful to work with a team of specialists that allow each patient to experience seamless continuity of care."

Hoi Yee (Zoe) Leung, OD
Teaching Associate

PATIENT CARE PHILOSOPHY
"I believe in treating patients with respect, and empowering patients to make the best choices for their eye health through patient education."

Vivian Manh, OD, MS
Clinical instructor

PATIENT CARE PHILOSOPHY
"Vision is a crucial aspect of a child's overall development. It is a privilege to be able to provide my young patients with clear and comfortable access to their visual environment and to help families maximize their children's potential for learning and growth."

ONCOLOGY AND OCULAR TUMORS

Andrew W. Stacey, MD, MSc
Associate Professor

PATIENT CARE PHILOSOPHY
"An appointment with your doctor can be stressful. When your eyes and vision are affected, the stress can be magnified. I enjoy teaching my patients about what I see in their eyes and providing them with information and options, then together we can come up with the best course of action."

The UW Medicine South Lake Union research and patient care facility, home of the Roger and Angie Karalis Johnson Retina Center, with the nearby Space Needle in the background.
PATIENT CARE

PEDIATRIC OPHTHALMOLOGY

Swati Agarwal-Sinha, MD
Associate Professor

PATIENT CARE PHILOSOPHY
“Treat every patient with same dedication, passion and commitment I would invest in those close to me. As a clinician scientist, I use scientific evidence to translate clinical care to parents so they can understand and participate in providing the best care for their child.”

Erin Herlihy, MD
Associate Professor
Director, Pediatric Ophthalmology Fellowship

PATIENT CARE PHILOSOPHY
“A fun and non-threatening environment is essential in engaging children and their families to participate in their eye care. Families need to have a thorough understanding of their child’s or their own condition to be effective partners in ensuring eye health and maximizing visual development.”

Francine M. Baran, MD
Clinical Associate Professor

PATIENT CARE PHILOSOPHY
“I love making a difference in children’s lives by helping care for one of their most precious abilities, their sight.”

Michelle Cabrera, MD
Associate Professor, Chief, Division of Ophthalmology, Seattle Children’s

PATIENT CARE PHILOSOPHY
“I believe that a child’s ocular health depends on my establishing a good relationship with both the family and the patient. I believe in open communication and discussion with everyone involved. Keeping your child’s eyes healthy is my priority. Finally, eye care should be fun, and your child should enjoy the experience!”

Kristina Tarczy-Hornoch, MD, DPh
Professor

PATIENT CARE PHILOSOPHY
“One of the most rewarding experiences for a physician is being able to teach families and empower them to make informed decisions about a child’s care.”

Laura C. Huang, MD
Assistant Professor

PATIENT CARE PHILOSOPHY
“From developing that individual relationship with a child to communicating with the patient’s family, I believe in the importance of cultivating the patient-physician relationship to help optimize children’s visual development.”
UVEITIS AND OCULAR INFLAMMATION

Kathryn L. Pepple, MD, PhD
Associate Professor
Director, Uveitis Fellowship

PATIENT CARE PHILOSOPHY
“...my goal is to prevent vision loss and blindness by providing high quality clinical care and developing new treatments for patients with uveitis."

Russell N. Van Gelder, MD, PhD
Boyd K. Bucey Memorial Professor and Chair, UW Medicine Department of Ophthalmology, Director, UW Medicine Eye Institute Director, UW Vision Science Center

PATIENT CARE PHILOSOPHY
“My goal is to give each patient the care I would give my family; to apply the best scientific evidence and most appropriate treatments; and to help the patient make the best medical decisions.”

Dr. Andrew Stacey, specialist in oncology and ocular tumors, examines a patient at the UW Medicine Eye Institute at Harborview Medical Center.

Comprehensive ophthalmologist Dr. Anne Ko performs an eye exam at the UW Medicine Eye Institute.
E D U C A T I O N

PREPARING THE NEXT GENERATION OF PHYSICIANS AND VISION SCIENTISTS

The University of Washington Department of Ophthalmology has trained more than 170 eye physicians and surgeons since 1966. Our committed faculty members, modern teaching facilities, and volume of pathology make the University of Washington an ideal learning environment.

RESIDENT AND FELLOW PHYSICIANS

RESIDENCY PROGRAM

The Ophthalmology residency program is designed to develop clinicians well trained in medical and surgical ophthalmology and prepared to excel as community practitioners, or to follow a career track that will lead them to academic medicine or biomedical research. With our outstanding faculty and state of the art facilities, our residents are exposed to a wide variety of pathology from the greater WWAMI region (Washington, Wyoming, Alaska, Montana, Idaho).

FELLOWSHIP PROGRAMS

Hargiss Ophthalmic Plastic & Reconstructive Surgery Fellowship
This competitive ASOPRS-approved two-year training program is designed to provide exposure to all aspects of ophthalmic plastic surgery.

Kinyoun Retina Fellowship
This AUPO-approved two-year training program is designed to provide exposure to all aspects of medical retina disease, vitreoretinal surgery, uveitis, and ocular tumors.

Pediatric Ophthalmology Fellowship
Seattle Children’s and the University of Washington Department of Ophthalmology offers a one-year, comprehensive medical and surgical Pediatric Ophthalmology and Strabismus fellowship. This competitive training program is designed to provide exposure to all aspects of pediatric ophthalmologic and adult strabismic disease.

Gensheimer Endowed Fellowship in Ocular Inflammatory Diseases
The University of Washington Department of Ophthalmology offers a one- or two-year, comprehensive AUPO FCC (Association of University Professors of Ophthalmology Fellowship Compliance Committee) approved uveitis and ocular inflammation fellowship.
Residency program director Dr. Parisa Taravati leads a surgical wet lab for UW Ophthalmology residents.

UW MEDICINE DEPARTMENT OF OPHTHALMOLOGY FELLOWS 2022-23

Alexandra Van Brummen, MD
Pediatric Ophthalmology

Matthew McKay, MD
Retina

Erin Godbout, MD
Ophthalmic Plastic & Reconstructive Surgery

Kareem Sioufi, MD
Retina

Gabrielle Turski, MD
Uveitis
Our faculty are drawn to the UW for its rich academic culture and its facility to translate the creative process into clinical practice. We thrive in discovery and innovation.

ACADEMIC YEAR 2021 (JULY, 2021 TO JUNE, 2022)

PUBLICATIONS

OUR DONORS, OUR THANKS

Gratitude to our supporters!

We extend appreciation to our philanthropic partners, whose generosity accelerates our ability to conduct cutting-edge research, provide excellent patient care, and train the next generation of ophthalmologists. To learn more about giving opportunities, please contact An Tran, director for philanthropy at 206.221.3286 or antran03@uw.edu. You can learn how UW Medicine is improving the health of our communities and beyond by visiting give.uwmedicine.org.

Every effort has been made to include all donors to the Department of Ophthalmology between October 15, 2020 and June 30, 2022. If you notice an omission or error, please contact An Tran at 206.221.3286.

Anonymous (2) Ronald and Bessie Bell Tina Bueche
Aaron Metals Tammy Bennett Carleton Bulkin
Monica Alcabin and David Perk Maureen Bergstrom Terry Butler
ALCON Laboratories, Inc. Joan Bergy Carolyn Cain
M. Joanne Allison The Bishop Foundation Oren and Gay Campbell
Ruby Amegah Blind Judo Foundation Chris and Jenny Carlson
American Academy of Ophthalmology Katherine and Michael Boehm, M.D. Betty Catlin
American Endowment Foundation The Boeing Company Daisy and Honwah Chan
Clifford Ananian Ellen and Thomas Borland Philip Chen, M.D. and Grace Cinciripini, M.D.
Stephen Ananian Jr. Cornelius and Catherine Borman Ajoy Cherian and Joba Moitra
Barry Anton Patricia Boxwell Elaine Chuang, M.D.
James and Marie Appel Sheila Breen Urquidi Timothy and Sharon Cibula
Richard and Dianne Arensberg BrightFocus Foundation Eric and Susan Clise
Corry and David Barr, M.D. Bruno Legacy Trust Costco
Rich Bebee, Ph.D. Judith Bruno Lois Craig
Walter and Jeanne Beerman Michael Bruno Eileen Crawford and Alan Jones
Kathleen Hunt-Davis and Steven Davis
Dawn’s Light Foundation
Linda Day, M.D.
Boh and Marilyn Dickey
Thuy Doan, M.D., Ph.D. and Benjamin Pinsky, M.D., Ph.D.
Vasiliki Dwyer
Ebay, Inc Foundation
Ebbe and Joanne Ebbesen
Nancy Eliason
James and Tamsin Erickson
Phillip and Laurie Erickson
Dennis Evans and Nancy Mee
Caridad Foo
Foundation Fighting Blindness, Inc.
Paul and Selma Forkash
Lawrence and Phyllis Frank
Philip and Sally Franzel
Nanette and Melvin Freeman, M.D.
Robert Freeman and Margarita Meta
Carol Fricke
Anne Futterman
Joseph and Cynthia Gensheimer
The Glaser Foundation
Ginger Goldman and Richard A. Goldman, D.D.S.
Sandra Goodkin
Steven Graham and Debra Graham, M.D.
Joann Gray
Steven Gulbransen
Lucia Hagander
Judy Hartman
James Hedden
Erin Herlihy, M.D. and Thomas Fritz
Harvey Himelfarb and Alice Swan
Katherine and William Hood Jr., M.D.
John Hottovy
Richard Hubbard
Irene Hunter
Illinois No. 3 Foundation
Lillian Janssen
David and Camille Jassny
Christopher and Mardra Jay
Jensen Eye Associates, PLLC
Johanna Jensen
Angie Karalis Johnson
Murray Johnstone, M.D. and Jeanie Johnstone
Pamela and John Jolley
Marjorie Jones*
Peter Joson, M.D.
Steven Kahn, M.B., Ch.B. and Stephanie Kahn
Janet* and Robert Kalina, M.D.
Suzanne and Stephen Kalish
Jessica Kato
Christopher and Patricia Kelly
Frederic Kiechel, III and Vivian Kiechel
Virginia King
Kiora Pharmaceuticals
Laurie Kirkman
Norma and Leonard Klorfine
Jeff Klute
David Knox
Ellen Kouleitsis-Young
Sherry Koyama
George and Martina Kren
Cheng Ku and Nien-Tzu Li
Alida and Christopher Latham
Marilyn and Vernon Leck
Pamela Lee
The Lowy Medical Research Institute Ltd
Li Hsiang Lu
SueAnn MacDonald
Peter Madison
Sidney McHarg
Mary Lou McVicker
Medical College of Wisconsin
Carolyn Miller*
PHILANTHROPY

Frederick Miller III, M.D. and Avis Miller
Alex and Tami Mollaei
George and Pauline Mulligan
Richard Munsen, M.D.
Sharyn Mustari and Michael Mustari, Ph.D.
Michelle Myers and Benjamin Diederich
Aiko and Frank Nakagawa
Maureen Neitz, Ph.D. and Jay Neitz, Ph.D.
Patsy Nelson
Elaine Newell
Thu-Lang Ngo and Cung Hoang
Abbey Norris
Ocular Instruments, Inc.
Tom and Carol Olson
Ron* and Carol Peck
Kelly and Carlos Pellegrini, M.D.
Kathryn Pepple, M.D., Ph.D. and Karl Pepple
Carl and Jeannette Pergam
T. Clyde and Judith Pitcher Jr.
Pamela Pitzer
Mark Pival
Linda Powers
Suzanne Ragen
Gopalan Ramanujam and Vasumathi Gopalan
Cary and Janet Rayment
Research to Prevent Blindness
Retina Research Foundation
Rosemary and Robert Rognstad
Mary Rossano
Walter and Janice Rotkis
Diane Ruff
Lynne Ryan
San Juan Island Community Foundation
Santen Incorporated
Saratoga Charitable Foundation
Sandra* and Steven Schoos
Richard and Barbara Shikiar
Allen* and Kathleen Shoup
Ronald and Jean Shreve
Brenda and Graham Siddall, Ph.D.
Olga Anne Sigl
Janice Silva
Amy Simmonsen
James and Janet Sinegal
Marjorie Somers
Amie and Jeff Sperring, M.D.
Therese and Phillip Stein
Suzanne Stevens
Henrik and Rebecca Strabo
Synopsys
Eric Tabb and Jeanne Bourget
Richard Teasley
Barbara Tfank
John and Eileen Tietze
United Way of Kitsap County
University-Ballard Lions Club
Joan and Henry Upton, M.D.
Russell Van Gelder, M.D., Ph.D. and Suzanne Dintzis, M.D., Ph.D.
Edward Vervoort
Violet Sees
Donald Vollmer and Charlene Resan-Vollmer
Deidra Wager
James Watt and Joan Berry Watt
Ida Whitesell
Susan Whitford
Luella and Wesley Wilson, M.D.
Carol Wright
Liana Yorke
Leon and Nancee Zimmerman

*deceased
Faculty named to endowed positions thanks to generous gifts

Department of Ophthalmology faculty members Dr. Jennifer Chao and Dr. Ruikang (Ricky) Wang have been named to endowed appointments at the University of Washington.

Dr. Chao, MD, Ph.D., Vice Chair for Research, was appointed to the Gordon and Joan Bergy Endowed Professorship in Ophthalmology. Dr. Chao has been on the faculty at UW since 2009.

A retinal disease specialist, Dr. Chao has an active laboratory that studies retinal degenerative disorders. The Chao Lab is investigating potential applications of induced pluripotent stem cells (iPSCs) for treating eye diseases and identifying new drug therapies for eye diseases.

Inherited retinal degeneration is a significant cause of blindness. The Chao laboratory is working to create models of retinal degenerative diseases that can be used to discover potentially therapeutic drugs. The laboratory takes blood samples from volunteers to create patient-specific stem cells and grow them into retinal cells to study.

In support of the Department of Ophthalmology, in 2012, Joan Bergy provided funding for the Joan and Gordon Bergy Visiting Professorship series, which brings three outstanding vision scientists to visit and deliver scientific lectures each year. Several years ago, Joan moved to the Aljoya community on Mercer Island. She and Gordon had a beloved home in Hansville, Washington. After she made the difficult decision to sell the house, she decided to use the proceeds to fund an endowed professorship. Dr. Chao is Joan’s retina specialist at the Karalis Johnson Retina Center at South Lake Union.

A UW faculty member since 2011, Dr. Ruikang (Ricky) Wang, Ph.D., was recently appointed to the George and Martina Kren Endowed Chair in Ophthalmology Research. Wang is a professor with appointments in the Departments of Bioengineering and Ophthalmology at the UW and directs the Biophotonics and Imaging Laboratory.

The Wang lab is dedicated to developing biomedical imaging techniques for early diagnosis, treatment, and management of human diseases, especially retinal diseases.

His efforts have contributed to retinal findings in infants and adults with unprecedented precision, speed, and imaging resolution. Dr. Wang is widely credited with being the inventor of optical coherence tomography angiography (OCTA), a technique in which blood flow can be measured in all blood vessels in the eye non-invasively. This technique is now a standard testing modality in ophthalmology offices worldwide.

George Kren was born in Prague, Czech Republic, and emigrated to the U.S. in the early 1970s. In 1976 he co-founded Tencor Instruments, a company that later merged into KLA-Tencor. He was also instrumental in founding the Surfscan Division and acquiring the companies Censor in Lichtenstein and NanoPro in Germany. For many years he had a leading role in SEMI Standards, where he received the SEMI Lifetime Award in 2004. George is now retired and lives with his wife, Martina, in Monterey, California. George serves on the UW Medicine Eye Institute Community Action Board, and he and Martina are also helping to support an endowed professorship in advanced ocular imaging within the Department of Ophthalmology.
In addition to establishing an enduring UW Medicine legacy for the donor, endowments provide a lasting and reliable source of support for the Department of Ophthalmology. We are honored to recognize many generous supporters who have invested in vision science research, patient care, and training. Endowments listed are those fully vested as of December 1, 2022. To learn more about establishing an endowment at UW Medicine, please visit give.uwmedicine.org.

ENDOWMENTS: A LASTING LEGACY

Ora Lee Anderson Endowed Ophthalmology Fund
Gordon and Joan Bergy Endowed Professorship in Ophthalmology
Frank and Elizabeth Bret Endowed Fund for Ophthalmology Research
Boyd K. Bucey Memorial Endowed Chair in Ophthalmology
John Colen M.D. Endowed Fund for Ophthalmology
Dr. Melvin I. and Nanette D. Freeman Endowed Fund in Ophthalmology
Sidney Futterman Endowment
Gensheimer Endowed Fellowship in Ocular Inflammatory Diseases
James L. Hargiss, M.D. Endowed Fund in Ophthalmology
Edyth W. Henderson Endowment
Grace E. Hill Chair in Vision Research
Ray H. Hill Chair in Ophthalmology
Patricia Johnson Hunt Endowed Fund for Ophthalmology
C. Dan and Irene Hunter Endowed Fund for Ophthalmology
Roger H. Johnson Award for Macular Degeneration Research
Murray and Jeanie Johnstone Endowed Travel Award for Ophthalmology
Robert and Janet Kalina Endowed Fund for Research and Teaching in Ophthalmology
Robert and Janet Kalina Fund for Education in Ophthalmology
Robert E. Kalina, M.D., Endowed Professorship for Ophthalmology Education
Karalis Johnson Retina Center Endowed Fund for Excellence
James L. Kinyoun, M.D. Endowed Retina Fellowship
Klorfine Family Endowed Chair in Ophthalmology Research
Thomas F. Kraft and Suzanne E. Stevens Endowed Fund for Vision Science
George and Martina Kren Endowed Chair in Ophthalmology Research
Latham Endowed Faculty Fellowship for Vision Science Research Innovation
D. Franklin Milam, M.D., Endowed Fellows Support Fund in Ophthalmology
Caroline and Roger Miller Endowed Fund for Ophthalmology
Richard S. Munsen, M.D., Endowed Fund for Ophthalmology
Helen L. and Arthur T. Ness Research Fund
Ophthalmology Endowed Fund
Raymond Endowed Fellowship in Ophthalmology
Helen A. & Robert Max Reynolds Endowed Research Fund in Ophthalmology
Rose Seabast Endowed Fund
Graham and Brenda Siddall Endowed Chair in Cornea Research
Siddall Endowed Fellowship for Uveitis Research
Stein/Musgrave Research Fund in Ophthalmology
Jules and Doris Stein Research to Prevent Blindness Professorship
Tenckhoff Family Endowed Research and Teaching Fund
Helen Ann Thompson Endowed Fund for the UW Eye Institute
University of Washington Department of Ophthalmology Outstanding Medical Student Scholarship
University of Washington Ophthalmology Resident Research Award

CURRENT-USE FUNDS

We are honored to receive support through named current-use funds including:

Bishop Foundation Professor in Ophthalmology
Computational Ophthalmology Research
Dawn’s Light Term Fund for IRD Research
Gensheimer Fellow in Ocular Inflammatory Diseases
Glaucoma Research Fund
Indigo Fund for Vision Research
Jassny Fund for Vision Science Research
Latham Fund for Vision Research
Mark J. Daily, M.D. Fund for Ophthalmology Research
Ron Peck Family Fund for Vision Research
Sinskey Foundation Research Gift
Tietze Family Vision Research Award
Violet Sees Fund
COMMUNITY ACTION BOARD: MAKING A DIFFERENCE

The Community Action Board (CAB) is a group of committed volunteers who advance the Eye Institute’s mission by serving as ambassadors in our community, advising faculty on matters of strategic importance, and generously supporting our mission with gifts. Philanthropic gifts help to accelerate innovation in the form of seed grants for our faculty research. We are honored and privileged to work with such a fine group of individuals as we pursue our mission of eliminating blinding eye disease.

2021-2022 CAB HIGHLIGHTS

- Engaged community members in faculty presentations about inherited retinal diseases, ocular oncology, and computational ophthalmology.
- Supported Vision Innovation Research Awards.
- Donated devices to support curriculum materials for residents.
- Other projects board members have previously funded and worked on include attracting talented new faculty; funding innovative research projects led by junior faculty; supporting the work at the Karalis Johnson Retina Center; holding community events and symposiums about specific eye conditions; and raising funding to expand opportunities for medical students across the country to complete ophthalmology rotations at UW.

CAB MEMBERS

Rich Bebee, Ph.D.
Carleton Bulkin
Lois Craig
Phil Erickson
Juliana Gensheimer
James Hedden
Frederick Huntsberry
Jack Jolley, Immediate Past Chair
Norma Klorfine
Leonard Klorfine
George Kren
Marnie LaPierre
Alida Latham
Christopher Latham
Marilyn Leck
Nancy Mee
R. Thomas Olson
Craig Smith, MD
Suzanne Stevens
Rahel Tesfahun, CAB Chair
Russell Van Gelder, MD, PhD
Susan Whitford

To learn more about the CAB or how you can get involved, please contact An Tran at (206) 221-3286 or antran03@uw.edu.

The Community Action Board has supported the research at the Karalis Johnson Retina Center at UW Medicine South Lake Union.